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Abstract

In quantum information processing by NMR one of the major challenges is relaxation or decoherence. Often it is found that the
equilibrium mixed state of a spin system is not suitable as an initial state for computation and a definite initial state is required to be
prepared prior to the computation. As these preferred initial states are non-equilibrium states, they are not stationary and are
destroyed with time as the spin system relaxes toward its equilibrium, introducing error in computation. Since it is not possible
to cut off the relaxation processes completely, attempts are going on to develop alternate strategies like quantum error correction
codes or noiseless subsystems. Here we study the relaxation behavior of various pseudo pure states and analyze the role of cross-
terms between different relaxation processes, known as cross-correlation. It is found that while cross-correlations accelerate the
relaxation of certain pseudo pure states, they retard that of others.
� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Quantum information processing (QIP) often re-
quires pure state as the initial state [1,2]. Shor�s prime
factorizing algorithm [3] and Grover search algorithm
[4] are few examples. Creation of pure state in NMR
is not easy due to small gaps between nuclear magnetic
energy levels and demands unrealistic experimental con-
ditions like near absolute zero temperature or extremely
high magnetic field. This problem has been circum-
vented by creating a pseudo pure state (PPS). While in
a pure state all energy levels except one have zero pop-
ulations, in a PPS all levels except one have equal pop-
ulations. Since the uniform background populations do
not contribute to the NMR signal, such a state then
mimics a pure state. Several methods of creating PPS
have been developed like spatial averaging [5,6], logical
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labeling [7–10], temporal averaging [11], and spatially
averaged logical labeling technique (SALLT) [12]. How-
ever pseudo pure state, as well as pure states are not sta-
tionary and are destroyed with time as the spin system
relaxes toward equilibrium. In QIP, there are also cases
where one or more qubits are initialized to a suitable
state at the beginning of the computation and are used
as storage or memory qubits at the end of the computa-
tion performed on some other qubits [13]. In these cases
it is important for the memory qubits to be in the initial-
ized state till the time they are in use, since deviation
from the initial state adds error to the output result.
Since it is not possible to stop decay of a state which
is away from equilibrium, alternate strategies like quan-
tum error correction [14] and noiseless subspace [15,16]
are being tried. Recently, Sarthour et al. [17] has re-
ported a detailed study of relaxation of pseudo pure
states and few other states in a quadrupolar system.
Here we experimentally examine the lifetime of
various pseudo pure states in a weakly J-coupled two
qubit system. We find that cross-terms (known as
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Fig. 1. (A) Chemical structure of 5-fluoro 1,3-dimethyl uracil. The
fluorine and the proton spins (shown by circles) are used as the two
qubits I1 and I2 respectively. (B) The energy level diagram of a two
qubit system identifying the four states 00, 01, 10, and 11. Under high
temperature and high field approximation [21], the relative equilibrium
deviation populations are indicated in the bracket for each level.
Assuming this to be a weakly coupled two spin system the deviation
populations become proportional to the gyromagnetic ratios c1 and c2.
Ikj refers to the transition of the jth spin when the other spin is in
state |kæ. Thus H0 means the proton transition when the fluorine is in
state |0æ.
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cross-correlation) between different pathways of relaxa-
tion of a spin can retard the relaxation of certain PPS
and accelerate that of others.

In 1946, Bloch [18] formulated the behavior of popu-
lations or longitudinal magnetizations when they are
perturbed from the equilibrium. The recovery toward
equilibrium is exponential for a two level system and
for a complex system the recovery involves several time
constants [19]. For complex systems the von Neumann–
Liouville equation [20,21] describes mathematically the
time evolution of the density matrix in the magnetic res-
onance phenomena. For system having more than one
spin the relaxation is described by a matrix called the
relaxation matrix whose elements are linear combina-
tions of spectral densities, which in turn are Fourier
transforms of time correlation function [22] of the fluc-
tuations of the various interactions responsible for
relaxation. There exist several different mechanisms
for relaxation, such as, time-dependent dipole–dipole
(DD) interaction, chemical shift anisotropy (CSA),
quadrupolar interaction, and spin rotation interaction
[22]. The correlation function gives the time correlations
between different values of the interactions. The final
correlation function has two major parts, namely the
�auto-correlation� part which gives at two different times
the correlation between the same relaxation interaction
and the �cross-correlation� part which gives the time cor-
relation between two different relaxation interactions.
The mathematics of cross-correlation can be found in
detail, in works of Schneider [23,24], Blicharski [25],
and Hubbard [26]. Recently, a few models have been
suggested to study the decoherence of the quantum
coherence, the off-diagonal elements in density matrix
[27,28]. It can be shown that in the absence of r.f. pulses
and under secular approximation, the relaxation of the
diagonal and the off-diagonal elements of the density
matrix are independent [19]. Here, we study the longitu-
dinal relaxation that is the relaxation of the diagonal
elements of the density matrix and the role of cross-cor-
relations in it.
2. Theory

2.1. The pseudo pure state: in terms of magnetization

modes

In terms of magnetizationmodes, the equilibrium den-
sity matrix of a two spin system is given by [6,21,29,30]

veq ¼ c1I1Z þ c2I2Z ; ð1Þ

where c1 and c2 are gyro-magnetic ratios of the two spins
I1 and I2, respectively [Fig. 1]. In general, the diagonal
density matrix of the two spin system, can be written as
v ¼ �aI1Z � bI2Z � m2I1ZI2Z ; ð2Þ
for which the condition a = b = m = K, corresponds to
the density matrix of a pseudo pure state (PPS) given
by [6]

vpps ¼ K½�I1Z � I2Z � 2I1ZI2Z �; ð3Þ

where K is a constant, the value of which depends on the
method of creation of PPS. The first two terms in the
right-hand side in Eqs. (2) and (3) are the single spin or-
der modes for the first and second spin, respectively,
while the last term is the two spin order mode of the
two spins [6]. Choosing properly the signs of the modes,
the various PPS of a two-qubit system are:

v00pps ¼ K½þI1Z þ I2Z þ 2I1ZI2Z �;
v01pps ¼ K½�I1Z þ I2Z þ 2I1ZI2Z �;
v10pps ¼ K½þI1Z � I2Z þ 2I1ZI2Z �;
v11pps ¼ K½þI1Z þ I2Z � 2I1ZI2Z �:

ð4Þ

The remaining four combinations of signs of the modes
in Eq. (3) give the same four PPS as given in Eq. (4) with
an overall negative sign. The relative populations of the
states for the four different PPS are shown in Fig. 2.
While in PPS (Eq. (3)), the magnitude of the all three
modes are equal, the equilibrium density matrix (Eq.
(1)) does not contain any two spin order mode. To reach
Eq. (3) starting from Eq. (1), the two spin order mode
has to be created and at the same time the magnitudes
of all the modes have to be made equal.



Fig. 2. Population distribution of different energy levels of a two spin
system in different pseudo pure states. K is a constant whose value
depends on the protocol used for the preparation of PPS. (A–D) show
respectively the |00æ, |01æ, |10æ, and |11æ PPS.
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2.2. Relaxation of magnetization modes

The equation of motion of modes M is given by [22]

� d

dt
~MðtÞ ¼ Ĉ½~MðtÞ � ~Mð1Þ�; ð5Þ

where Ĉ is the relaxation matrix and ~Mð1Þ is the equi-
librium values of a mode. For a weakly coupled two spin
system relaxing via mutual dipolar interaction and the
CSA relaxation, the two dominant mechanism of relax-
ation of spin half nuclei in liquid state, the above equa-
tion takes the form

� d

dt

I1ZðtÞ
I2ZðtÞ

2I1ZI2ZðtÞ

2
64

3
75¼

q1 r12 d1;12
r12 q2 d2;12
d1;12 d2;12 q12

2
64

3
75 �

I1ZðtÞ� I1Zð1Þ
I2ZðtÞ� I2Zð1Þ

2I1ZI2ZðtÞ

2
64

3
75;

ð6Þ

where qi is the self relaxation rate of the single spin order
mode of spin i, qij is the self relaxation rate of the two
spin order mode of spin i and j, rij is the cross-relaxation
(nuclear Overhouser effect, NOE) rate between spins i
and j and di,ij is the cross-correlation term between
CSA relaxation of spin i and the dipolar relaxation
between the spins i and j. q and r involve only the
auto-correlation terms and d involves only the cross-cor-
relation terms [22]. Magnetization modes of an order re-
laxes to other orders through cross-correlation and in its
absence, the relaxation matrix becomes block diagonal
within each order. The relaxation of modes are in gen-
eral dominated by their self relaxation q, but in case
of samples having small q (long T1), the cross-correla-
tion terms become comparable with self-relaxation and
play an important role in relaxation of the spins. The
formal solution of Eq. (5) is given by

~MðtÞ ¼ ~Mð1Þ þ ½~Mð0Þ � ~Mð1Þ� expð�ĈtÞ: ð7Þ
As time evolution of various modes are coupled, a

general solution of the above equation requires diago-
nalization of the relaxation matrix. However, in the ini-
tial rate approximation Eq. (7) can be written (for small
values of t = s) as

~MðsÞ ¼ ~Mð1Þ þ ½~Mð0Þ � ~Mð1Þ�½1� Ĉs�
¼ ~Mð0Þ � Ĉs½~Mð0Þ � ~Mð1Þ�: ð8Þ

This equation asserts that in the initial rate approx-
imation, the decay or growth of a mode is linear with
time and the initial slope is proportional to the corre-
sponding relaxation matrix element. If the modes are
allowed to relax for a longer time, their decay or
growth deviates from the linear nature and adopts a
multi-exponential behavior to finally reach the equilib-
rium [22].
2.3. Relaxation of pseudo pure state

Let a two-qubit system be in |00æ PPS at t = 0.

v00ð0Þ ¼ K½I1Z þ I2Z þ 2I1ZI2Z �: ð9Þ
After time t it will relax to

v00ðtÞ ¼ ðK þ D1ðtÞÞI1Z þ ðK þ D2ðtÞÞI2Z
þ ðK þ D12ðtÞÞ2I1ZI2Z ; ð10Þ

where D1(t), D2(t), and D12(t) are the time-dependent
deviations of respective modes from their initial values.
The deviation of the two spin order can be measured
from spectrum of either spin. Eq. (10) can also be writ-
ten as

v00ðtÞ ¼ ðK þ D12ðtÞÞ½I1Z þ I2Z þ 2I1ZI2Z � þ ðD1ðtÞ
� D12ðtÞÞI1Z þ ðD2ðtÞ � D12ðtÞÞI2Z : ð11Þ

The first term is the pseudo pure state with the coef-
ficient decreasing in time while the other two terms are
the excesses of the single spin order modes with coeffi-
cients increasing in time. For other pseudo pure states
Eq. (11) becomes:

v01ðtÞ ¼ ðKþD12ðtÞÞ½�I1Z þ I2Z þ 2I1ZI2Z �
þ ðD1ðtÞþD12ðtÞÞI1Z þðD2ðtÞ�D12ðtÞÞI2Z ; ð12Þ

v10ðtÞ ¼ ðKþD12ðtÞÞ½I1Z � I2Z þ 2I1ZI2Z �
þ ðD1ðtÞ�D12ðtÞÞI1Z þðD2ðtÞþD12ðtÞÞI2Z ; ð13Þ

v11ðtÞ ¼ ðK�D12ðtÞÞ½I1Z þ I2Z � 2I1ZI2Z � þ ðD1ðtÞ
þD12ðtÞÞI1Z þðD2ðtÞþD12ðtÞÞI2Z : ð14Þ
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In the initial rate approximation (using Eq. (8)) we ob-
tain for the |00æ PPS:

D1ðsÞ ¼ s½q1ðc1 � KÞ þ r12ðc2 � KÞ � Kd1;12�; ð15Þ

D2ðsÞ ¼ s½r12ðc1 � KÞ þ q1ðc2 � KÞ � Kd2;12�; ð16Þ

D12ðsÞ ¼ s½d1;12ðc1 � KÞ þ d2;12ðc2 � KÞ � Kq12�: ð17Þ
Let the coefficients of the PPS term and the two single
spin order modes I1Z and I2Z in Eq. (11) be called as
A, B, and C, respectively. Fig. 3 schematically shows
the time evolution of the coefficients A, B, and C for
|00æ PPS. Any coefficient for any PPS at any instant, is
simply the initial value plus the total deviation due to
the auto and the cross-correlations. For example, A
for |00æ PPS at time s, is A00ðsÞ ¼ K þA00

autoðsÞþ
A00

cc ðsÞ, where K is the initial value, and A00
autoðsÞ and
Fig. 3. Schematic representation of decay of the coefficient A and
growth of the coefficients B and C. The magnetization modes are
normalized to their respective equilibrium values. In each sub-figure the
three bars correspond to the modes I1Z, I2Z, and 2I1ZI2Z from left to
right. The amount of any mode present at any time is directly
proportional to the height of the corresponding bar. The numbers
provided in the rightmost column represent typical values of the modes.
(A) Thermal equilibrium. At thermal equilibrium only I1Z and I2Z exist.
(B) |00æ pseudo-pure state just after creation, where all the three modes
are equal in magnitude. For |00æ PPS all modes are of same sign but this
is not the case for other PPS [Eq. (3)]. Coefficient A is the common
equal amount of all the modes and it is maximum at t = 0. (C) The
amount of magnetizationmodes (schematic) at time s, after preparation
of the PPS at t = 0. The two single spin order modes increase and the
two spin order mode decreases from their initial values. (D) The state of
various modes at time s, (same as C) redrawn with filled bar to indicate
the residual value ofA. All the three coefficientsA, B, and C are shown.
A (shown by the filled bar), which is the measure of the PPS, has come
down by the same amount as the two spin order. B (shown by the empty
bar) and C (shown by the striped bar) are the residual part of the single
spin order modes I1Z and I2Z, respectively. (E) The values of various
modes and coefficients after a delay s 0 > s.
A00
cc ðsÞ are the deviations at s due to auto-correlation

and cross-correlation parts, respectively.

2.3.1. Contribution of auto-correlation terms to the

deviation

Putting the values of the deviations of different modes
obtained from Eqs. (15)–(17) in Eqs. (11)–(14), we ob-
tain the contribution only of auto-correlation terms to
the deviation from initial value of the coefficients A,
B, and C under initial rate approximation (at t = s) as:

A00
autoðsÞ¼A01

autoðsÞ¼A10
autoðsÞ¼A11

autoðsÞ¼�Kq12s;

B00
autoðsÞ¼ ½q1ðc1�KÞþr12ðc2�KÞþKq12�s;

B01
autoðsÞ¼ ½q1ðc1þKÞþr12ðc2�KÞ�Kq12�s;

B10
autoðsÞ¼ ½q1ðc1�KÞþr12ðc2þKÞþKq12�s;

B11
autoðsÞ¼ ½q1ðc1�KÞþr12ðc2�KÞþKq12�s;

C00
autoðsÞ¼ ½r12ðc1�KÞþq2ðc2�KÞþKq12�s;

C01
autoðsÞ¼ ½r12ðc1þKÞþq2ðc2�KÞþKq12�s;

C10
autoðsÞ¼ ½r12ðc1�KÞþq2ðc2þKÞ�Kq12�s;

C11
autoðsÞ¼ ½r12ðc1�KÞþq2ðc2�KÞþKq12�s: ð18Þ

It is evident that in absence of cross-correlations the |00æ
and |11æ PPS relax at the same initial rate since
A00

auto ¼ A11
auto, B

00
auto ¼ B11

auto, and C00
auto ¼ C11

auto. However
the same is not true for |01æ and |10æ PPS.
2.3.2. Contribution of cross-correlation terms to the

deviation

The contribution by the cross-correlation terms is
given by

A00
cc ðsÞ ¼ þ½d1;12ðc1 � KÞ þ d2;12ðc2 � KÞ�s;

A01
cc ðsÞ ¼ þ½d1;12ðc1 þ KÞ þ d2;12ðc2 � KÞ�s;

A10
cc ðsÞ ¼ þ½d1;12ðc1 � KÞ þ d2;12ðc2 þ KÞ�s;

A11
cc ðsÞ ¼ �½d1;12ðc1 � KÞ þ d2;12ðc2 � KÞ�s;

B00
cc ðsÞ ¼ �½d1;12c1 þ d2;12ðc2 � KÞ�s;

B01
cc ðsÞ ¼ þ½d1;12c1 þ d2;12ðc2 � KÞ�s;

B10
cc ðsÞ ¼ �½d1;12c1 þ d2;12ðc2 þ KÞ�s;

B11
cc ðsÞ ¼ þ½d1;12c1 þ d2;12ðc2 � KÞ�s;

C00
cc ðsÞ ¼ �½d1;12ðc1 � KÞ þ d2;12c2�s;

C01
cc ðsÞ ¼ �½d1;12ðc1 þ KÞ þ d2;12c2�s;

C10
cc ðsÞ ¼ þ½d1;12ðc1 � KÞ þ d2;12c2�s;

C11
cc ðsÞ ¼ þ½d1;12ðc1 � KÞ þ d2;12c2�s:

ð19Þ

The important thing is that the presence of cross-correla-
tion can lead to differential relaxation of all PPS. Positive
cross-correlation rates d1,12 and d2,12, slow down the
relaxation of all the three coefficients for |00æ PPS since
ðA00ðsÞ > A00

autoðsÞ;B
00ðsÞ < B00

autoðsÞ; C
00ðsÞ < C00

autoðsÞÞ,
while make the relaxation of all three coefficients faster



Fig. 4. Simulation of decay of coefficient A. The boxes (h) and circles
(s) correspond to the |11æ and |00æ PPS, respectively. In each plot
deviation from initial value ðAðtÞ �Að0ÞÞ has been plotted.
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for |11æ PPS since ðA11ðsÞ < A11
autoðsÞ;B

11ðsÞ > B11
autoðsÞ;

C11ðsÞ > C11
autoðsÞÞ. For |01æ and |10æ PPS cross-correla-

tions give a mixed effect since ðA01ðsÞ > A01
autoðsÞ;

B01ðsÞ>B01
autoðsÞ;C

01ðsÞ<C01
autoðsÞÞ and ðA10ðsÞ> A00

autoðsÞ;
B10ðsÞ<B10

autoðsÞ;C
10ðsÞ>C10

autoðsÞÞ. As the contributions
of the auto-correlation part for |00æ and |11æ PPS are
equal, we have monitored the relaxation behavior only
of |00æ and |11æ PPS to study the effect of cross-
correlations.

For samples having long T1, where the cross-correla-
tions becomes comparable with auto-correlation rates,
the four PPS relax with four different rates and the dif-
ference increases with the increased value of the cross-
correlation terms. The three coefficients A, B, and C
(normalized to the equilibrium line intensities) in terms
of proton and fluorine line intensities for |00æ PPS are:

AðtÞ ¼ H 0ðtÞ � H 1ðtÞ
H 1ð1Þ þ H 0ð1Þ

¼ F 0ðtÞ � F 1ðtÞ
F 1ð1Þ þ F 0ð1Þ

;

BðtÞ ¼ 2H 1ðtÞ
H 0ð1Þ þ H 1ð1Þ

;

CðtÞ ¼ 2F 1ðtÞ
F 0ð1Þ þ F 1ð1Þ

;

ð20Þ

and for |11æ PPS are:

AðtÞ ¼ H 1ðtÞ � H 0ðtÞ
H 1ð1Þ þ H 0ð1Þ

¼ F 1ðtÞ � F 0ðtÞ
F 1ð1Þ þ F 0ð1Þ

;

BðtÞ ¼ 2H 0ðtÞ
H 0ð1Þ þ H 1ð1Þ

;

CðtÞ ¼ 2F 0ðtÞ
F 0ð1Þ þ F 1ð1Þ

;

ð21Þ

where H0 and H1 are intensities of the two proton tran-
sitions, when the fluorine spin is, respectively, in state |0æ
and |1æ. Similarly F0 and F1 are intensities of two fluo-
rine transitions corresponding to the proton spin being,
respectively, in the state |0æ and |1æ, as shown in Figs. 1
and 6. H0(t) and H0(1) give the H0 line intensity respec-
tively at time t and at equilibrium. Thus by monitoring
the intensities of the two proton and two fluorine tran-
sitions as a function of time, one can calculate the coef-
ficient A(t) which is a measure of decay of PPS.
3. Simulation

Relaxation of the coefficients A, B, and C have been
simulated using MATLAB, for a weakly coupled
19F–1H system. The relaxation matrix used for the sim-
ulation is

Ĉ ¼
0:3125 0:02 d1;12
0:02 0:33 d2;12
d1;12 d2;12 0:33

2
64

3
75:
Fig. 4 shows the decay of coefficient A with time. A00

and A11 shows no difference in decay rate in absence
of cross-correlation rates. As d1,12 and d2,12 are increased
more and more difference in decay rate is observed. Fig.
5 shows growth of coefficients B and C. As d2,12 is taken
smaller than d1,12, difference in decay rate between C00

and C11 is found to be less than between B00 and B11.
4. Experimental

All the relaxation measurement were performed on a
two qubit system formed by one fluorine and one proton
of 5-fluoro 1,3-dimethyl uracil yielding an AX spin sys-
tem with a J-coupling of 5.8 Hz. Longitudinal relaxation



Fig. 5. Simulation of growth of coefficient B and C. The boxes (h) and
circles (s) correspond to the |11æ and |00æ PPS, respectively.

Fig. 6. Relaxation of Pseudo pure state as monitored on (A) fluorine
spin and (B) proton spin of the 5-fluoro 1,3-dimethyl uracil at four
different temperatures. The top row in (A) and (B) show the
equilibrium spectrum at each temperature. With decrease in temper-
atures the lines broaden due to decreased T2. The second row in (A)
and (B) show the spectra corresponding to the |00æ PPS, prepared by
spatial averaging method using J-evolution. The state of PPS was
measured by 90� pulse at each spin. The third row in (A and B) show
the spectra after an interval of 2.5 s after creation of the |00æ PPS. The
fourth row shows the spectra immediately after creation of |11æ PPS
and the fifth row, the spectra after 2.5 s.
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time constants for 19F and 1H are 6 and 7.2 s, respec-
tively, at room temperature (300 K). All the experiments
were performed in a Bruker DRX 500 MHz spectrome-
ter where the resonance frequencies for 19F and 1H are
470.59 and 500.13 MHz respectively. The pseudo-pure
state was prepared by spatial averaging method using
J-evolution [6]. Relaxation of all the three coefficients
for |00æ and |11æ PPS has been calculated. Since auto-
correlations contribute equally to the relaxation of these
two PPS, any difference in relaxation rate can be attrib-
uted to cross-correlation rates.

Sample temperature was varied to change the correla-
tion time and hence the cross-correlation rate d. Four
different sample temperatures, 300, 283, 263, and
253 K were used. Fig. 6 shows the proton and fluorine
spectra obtained using recovery measurement at four
different temperatures. The spectra correspond to the
initial PPS state and that after an interval of 2.5 s. Fig.
7 shows the longitudinal relaxation times (T1) of fluorine
and proton as function of temperature obtained from
initial part of inversion-recovery experiment. A steady
decrease in T1 with decreasing temperature indicates
that the dynamics of the sample molecule is in the short
correlation time limit [21]. In this limit auto- as well as
cross-correlations increase linearly with decreasing
temperature.

All the spectra were fitted to bi-Lorentzian lines in
MATLAB and various parameters were extracted using
the Origin software. Fig. 8 shows the decay of the coef-
ficientA calculated independently from proton and fluo-
rine spectra. At 300 K, A00 and A11 showed almost same
rate of decay. As the temperature was gradually low-
ered, a steady increase in difference in decay rate was
observed. This is due to the steady increase in cross-cor-
relation rates with decreasing temperature, which is ex-
pected in the short correlation time limit. In Fig. 9 the
growths of the coefficients B and C are shown. Similar



Fig. 7. Longitudinal relaxation time T1 of fluorine (A) and proton (B) as function of temperature, measured from the initial part of inversion
recovery experiment for each spin.

Fig. 8. The deviation from initial value (at t = 0) of the coefficientA of
the PPS term calculated from proton (left column) and fluorine (right
column) at four different sample temperatures. The empty (s) and
filled (d) circles correspond to the |00æ and |11æ PPS, respectively.

Fig. 9. The growth of the coefficients B and C at different sample
temperatures. B was calculated from Fluorine spectrum while C was
calculated from the proton spectrum. The empty (s) and filled (d)
circles correspond to the |00æ and |11æ PPS, respectively.
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to the coefficient A, coefficients B and C also show differ-
ences in decay rate between |00æ and |11æ PPS at lower
temperatures. The difference between B00 and B11 at
any temperature was found to be larger compared to be-
tween C00 and C11. This is expected since, according to
Eq. (19) the dominant cross-correlation factor in B00

and B11 is d1,12 which is the cross-correlation between
CSA of fluorine with fluorine-proton dipolar interaction
whereas in C00 and C11 the dominant factor is d2,12 which
is cross-correlation between a much smaller CSA of pro-
ton, and the fluorine-proton dipolar interaction. Thus it
is found that at lower temperatures the |00æ PPS decays
slower than the |11æ PPS. The dominant difference in the
decay rates arises from the cross-correlations between
the CSA of the fluorine and the dipolar interaction be-
tween the fluorine and the proton spin. To the best of
our knowledge, this is the first study of its kind where
the differential decay of the PPS has been attributed to
cross-correlations.
5. Conclusion

We have demonstrated here that in samples having
long T1 cross-correlations play an important role in
determining the rate of relaxation of pseudo pure state.
In QIP sometimes one or more qubits having compara-
tively longer longitudinal relaxation are used as storage
or memory qubits. Recently, Levitt and co-workers
[31,32] have demonstrated a long living antisymmetric
state arrived by shifting the sample from high to very
low magnetic field, suggesting that this long living state
could be used as memory qubit. In such cases, fidelity of
computation depends on how much the memory qubits
have been deviated from the initialized state at the
beginning of the computation till the time they are actu-
ally used. Theoretically it is shown here that in presence
of cross-correlations, all the four PPS relax with differ-
ent initial rates. For positive cross-correlations the |00æ
PPS relaxes significantly slower than |11æ PPS. It is
therefore important to choose a proper initial pseudo
pure state according to the sample.
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Bonagamba, A.P. Guimarães, J.C.C. Freitas, I.S. Oliveira,
Relaxation of coherent states in a two-qubit NMR quadrupolar
system, Phys. Rev. A 68 (2003), 022311.

[18] F. Bloch, Nuclear induction, Phys. Rev. 70 (1946) 460.
[19] A.G. Redfield, The theory of relaxation processes, Adv. Magn.

Res. 1 (1966) 1.
[20] J. von Neumann, Measurement and reversibility and the measur-

ing process, chapter V and VI in Mathematische Grund Lagen der
Quantenmechanik, Springer, Berlin (1932). English translation by
R.T. Beyer, Mathematical Foundations of Quantum Mechanics,
Princeton Univ. Press, Princeton.

[21] A. Abragam, Principles of Nuclear Magnetic Resonance, Clare-
don Press, Oxford, 1961.

[22] A. Kumar, R.C.R. Grace, P.K. Madhu, Cross correlation in
NMR, Prog. Nucl. Magn. Res. Spectrosc. 37 (2000) 191–319.

[23] H. Schneider, Kernmagnetische Relaxation von Drei-Spin-
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MoleKülen im flüssign oder adsorbierten Zustand. II, Ann. Phys.
16 (1965) 135.

http://theory.caltech.edu/people/preskill/
http://theory.caltech.edu/people/preskill/


A. Ghosh, A. Kumar / Journal of Magnetic Resonance 173 (2005) 125–133 133
[25] J.S. Blicharski, Interference effect in nuclear magnetic relaxation,
Phys. Lett. A 24 (1967) 608.

[26] P.S. Hubbard, Some properties of correlation functions of
irreducible tensor operators, Phys. Rev. 180 (1969) 319.

[27] W.H. Zurek, Environment-induced superselection rules, Phys.
Rev. D 26 (1982) 1862.

[28] G. Teklemariam, E.M. Fortunato, C.C. Lopez, J. Emerson, J.P.
Paz, T.F. Havel, D.G. Cory, Method for modeling decoherence
on a quantum information processor, Phys. Rev. A 67 (2003)
062316.
[29] R.R. Ersnt, G. Bodenhausen, A. Wokaun, Principles of Nuclear
Magnetic Resonance in One and Two Dimensions, Clarendon
press, Oxford, 1987.

[30] J.A. Jones,R.H.Hansen,M.Mosca,Quantum logic gates andnuclear
magnetic resonance pulse sequences, J. Magn. Res. 135 (1998) 353.

[31] M. Carravetta, M.H. Levitt, Long-lived nuclear spin states in
high-field solution NMR, J. Am. Chem. Soc. 126 (2004) 6228.

[32] M. Carravetta, O.G. Johannessen, M.H. Levitt, Beyond the T1

limit: singlet nuclear spin states in low magnetic fields, Phys. Rev.
Lett. 92 (2004) 153003.


	Relaxation of pseudo pure states: the role of cross-correlations
	Introduction
	Theory
	The pseudo pure state: in terms of magnetization modes
	Relaxation of magnetization modes
	Relaxation of pseudo pure state
	Contribution of auto-correlation terms to the deviation
	Contribution of cross-correlation terms to the deviation


	Simulation
	Experimental
	Conclusion
	Acknowledgments
	References


